Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0613820040140050874
Journal of Life Science
2004 Volume.14 No. 5 p.874 ~ p.881
DNA Microarray Analysis of the Gene Expression Profile of Activated Human Umbilical Vein Endothelial Cells
Kim Sun-Yong

Oh Ho-Kyun
Lee Su-Young
Nam Suk-Woo
Lee Jung-Yong
Ahn Hyun-Young
Hong Yong-Kil
Joe Young-Ae
Abstract
Angiogenesis has been implicated in progression of inflmmation, arthritis, psoriasis, atherosclerosis as well as tumor growth and metastasis. Intensive studies have been carried out to develop a strategy for cancer treatment by blocking angiogenesis. During angiogenesis, endothelial proliferation and migration essentially occurs upon activation. In this study, we compared the expression profiles of human umbilical endothelial cells activated by incubating in vitro in the rich medium containing several growth factors, and non-activated ones. cDNA targets derived from total RNAs of HUVEC activated for 13 h in M199 medium containing endothelial cell growth supplement, 20% fetal bovine serum, and heparin, after reaching 70¢¦80% confluency, or non-activated, were hybridized onto oligonucleotide microarrays containing 1,8864 genetic elements. Unsupervised hierarchical clustering analysis resulted in two subgroups on dendrogram exhibiting activated and non-activated HUVECs. We then extracted 122 outlier genes which were shown to be up-regulated or under-expressed by at least 2-folds in activated HUVECs. Among these, 32 annotated genes were up-regulated and 38 were down-regulated in activated HUVECs. Interestingly, genes involved in cell proliferation, motility, and inflammation/immune response were up-regulated in activated HUVEC, whereas genes for cell adhesion or vessel morphogenesis/function were down-regulated. Unexpectedly, the expression of genes well-characterized as angiogenesis markers was not changed except Eph-B4, which was down-regulated about 4 folds. 52 unknown genes were also up- or down-regulated. Therefore, these results could provide an opportunity to targeting new vascular molecules for the development of anti-angiogenic molecules.
KEYWORD
angiogenesis, microarray, expression profile, motility, endothelial cell
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)